Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 25(2): e202300673, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37994376

RESUMO

The in vitro synthesis of Coenzyme A (CoA)-thioester intermediates opens new avenues to transform simple molecules into more complex and multifunctional ones by assembling cell-free biosynthetic cascades. In this review, we have systematically cataloged known CoA-dependent enzyme reactions that have been successfully implemented in vitro. To faciliate their identification, we provide their UniProt ID when available. Based on this catalog, we have organized enzymes into three modules: activation, modification, and removal. i) The activation module includes enzymes capable of fusing CoA with organic molecules. ii) The modification module includes enzymes capable of catalyzing chemical modifications in the structure of acyl-CoA intermediates. And iii) the removal module includes enzymes able to remove the CoA and release an organic molecule different from the one activated in the upstream. Based on these reactions, we constructed a reaction network that summarizes the most relevant CoA-dependent biosynthetic pathways reported until today. From the information available in the articles, we have plotted the total turnover number of CoA as a function of the product titer, observing a positive correlation between both parameters. Therefore, the success of a CoA-dependent in vitro pathway depends on its ability to regenerate CoA, but also to regenerate other cofactors such as NAD(P)H and ATP.


Assuntos
Acil Coenzima A , NAD , Acil Coenzima A/metabolismo , NAD/metabolismo , Coenzima A/metabolismo
2.
Chembiochem ; 23(10): e202200136, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35349204

RESUMO

Native amine dehydrogenases (nat-AmDHs) have recently emerged as a potentially valuable new reservoir of enzymes for the sustainable and selective synthesis of chiral amines, catalyzing the NAD(P)H-dependent ammoniation of carbonyl compounds with high activity and selectivity. MATOUAmDH2, recently identified from the Marine Atlas of Tara Oceans Unigenes (MATOUv1) database of eukaryotic genes, displays exceptional catalytic performance against its best identified substrate, isobutyraldehyde, as well as having broader substrate scope than other nat-AmDHs. In the interests of providing a platform for the rational engineering of this and other nat-AmDHs, we have determined the structure of MATOUAmDH2 in complex with NADP+ and also with the cofactor and cyclohexylamine. Monomers within the structure are representative of more open and closed conformations of the enzyme and illustrate the profound changes undergone by nat-AmDHs during the catalytic cycle. An alanine screen of active site residues revealed that M215A and L180A are more active than the wild-type enzyme for the amination of cyclohexanone with ammonia and methylamine respectively; the latter suggests that AmDHs have the potential to be engineered for the improved production of secondary amines.


Assuntos
NAD , Oxirredutases , Aminação , Aminas/química , Biocatálise , Mutação , NAD/metabolismo , NADP/metabolismo , Oxirredutases/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...